Activation of thymocyte glucocorticoid receptors to the steroid binding form. The roles of reduction agents, ATP, and heat-stable factors.
نویسندگان
چکیده
The specific glucocorticoid binding capacity in cytosol preparations of rat thymocytes decays with a half-life of 4 h at 0 degrees C or 20 min at 25 degrees C. Phosphatase inhibitors (molybdate, fluoride, glucose 1-phosphate) added alone do not prevent this inactivation. Dithiothreitol (2 mM) has a large stabilizing effect on the binding capacity at 0 degrees C but only a small effect at 25 degrees C. Addition of 10 mM molybdate plus 2 mM dithiothreitol totally prevents inactivation for at least 8 h at 25 degrees C as well as at 0 degrees C. Fluoride (100 mM) also retards the inactivation if added with dithiothreitol. Addition of dithiothreitol at 25 degrees C to inactivated cytosol receptors results in partial activation of the binding capacity. Addition of dithiothreitol to receptors inactivated at 25 degrees C in the presence of molybdate allows total reactivation of the binding capacity to the maximum zero time value. If binding capacity is inactivated by preincubation of the cytosol at 25 degrees C, addition of ATP with dithiothreitol enhances the activation observed with only dithiothreitol. This ATP stimulated activation is optimal at 1 to 3 mM. ATP (10 mM) is required when molybdate is added to prevent simultaneous inactivation. ADP, GTP, CTP, and UTP have some activating capacity but the effects of all nucleotides are inhibited by the ATP analog, adenyl-5'-yl (beta, gamma-methylene)diphosphonate. ATP-dependent activation can also be prevented with 50 mM EDTA, and addition of magnesium partially overcomes the EDTA inhibition. Dithiothreitol activation of thymocyte glucocorticoid binding capacity can also be enhanced by addition of a heat-stable preparation from thymocytes, L cells, or liver. Sephadex G-25 chromatography, assay of ATP, and inhibition of the activation with adenyl-5'-yl (beta, gamma-methylene)diphosphonate suggest that these preparations contain varying amounts of endogenous reducing equivalents and ATP as well as a larger heat stable factor. Maximum activation is obtained by adding dithiothreitol, ATP, molybdate, and the larger heat-stable factor. These results suggest that stabilization and activation of glucocorticoid binding capacity in thymocytes requires phosphorylation as well as reduction of the receptor itself or of some other component required for the steroid binding reaction.
منابع مشابه
ATP-dependent activation of L cell glucocorticoid receptors to the steroid binding form.
The specific glucocorticoid binding capacity in cytosols prepared from L929 mouse fibroblasts (L cells) is inactivated with a half-life of approximately 2 h at 25 degrees C. As previously published, this inactivation can be prevented with 10 mM molybdate and markedly slowed by addition of other phosphatase inhibitors such as glucose 1-phosphate and fluoride. We have now found that ATP (5 to 10 ...
متن کاملTransformation of glucocorticoid and progesterone receptors to the DNA-binding state.
This brief review explores some recent observations relating to the structure of untransformed glucocorticoid and progesterone receptors and the mechanism by which the receptors are transformed to the DNA-binding state. In their molybdatestabilized, untransformed state, progesterone and glucocorticoid receptors exist as a heteromeric 8-9S complex containing one unit of steroid binding phosphopr...
متن کاملThe emerging role of FK506-binding proteins as cancer biomarkers: a focus on FKBPL.
FKBPs (FK506-binding proteins) have long been recognized as key regulators of the response to immunosuppressant drugs and as co-chaperones of steroid receptor complexes. More recently, evidence has emerged suggesting that this diverse protein family may also represent cancer biomarkers owing to their roles in cancer progression and response to treatment. FKBPL (FKBP-like) is a novel FKBP with r...
متن کاملPhosphorylation of Glucocorticoid Receptor-associated and Free Forms of the -90-kDa Heat Shock Protein before and after Receptor Activation*
Several lines of evidence have suggested that glucocorticoid receptor function may be regulated by phosphorylation-dephosphorylation reactions, and it has been proposed that dephosphorylation accompanies activation to the DNA-binding form. The phosphate content of the -100-kDa steroid-binding protein has been determined directly and was found not to change during activation in intact cells (Men...
متن کاملChaperones and the maturation of steroid hormone receptor complexes
Copyright: © Tao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Steroid hormone receptors (SHRs) of the nuclear receptor family are intracellular, ligand-dependent transcription factors responsible for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 254 11 شماره
صفحات -
تاریخ انتشار 1979